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Singular Limit of a Reaction-Diffusion Equation with
a Spatially Inhomogeneous Reaction Term*
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We study reaction-diffusion equations with a spatially inhomogeneous reaction
term. If the coefficient of these reaction term is much larger than the diffusion
coefficient, a sharp interface appears between two different phases. We show
that the equation of motion of such an interface involves a drift term despite the
absence of drift in the original diffusion equations. In particular, we show that
the same rich spatial patterns observed for a chemotaxis-growth model can be
realized by a system without a drift term.

KEY WORDS: Reaction-diffusion equations; nonlinear diffusion; singular
perturbation; interface motion; chemotaxis; matched asymptotic expansion.

1. INTRODUCTION

It is well-known that some classes of nonlinear diffusion equations give rise
to sharp internal layers (or interfaces) when the diffusion coefficient is very
small or the reaction term is very large. And the motion of such interfaces
is often driven by their curvature. In this paper we consider a diffusion
equation with a spatially inhomogeneous reaction term of the form

=ut=={2u&
1
=

h(x)2 W$(u) (1.1)

1165

0022-4715�99�0600-1165�16.00�0 � 1999 Plenum Publishing Corporation

1 Department of Computer Science and Information Mathematics, University of Electro-com-
munications, 1-5-1 Chofugaoka, Chofu, Tokyo 182, Japan.

2 Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Tokyo
153, Japan.

3 Analyse Nume� rique et EDP, CNRS, et Universite� de Paris-Sud, 91405 Orsay, France.
4 Mathematisches Institut der Albert-Ludwigs-Universita� t Freiburg, D-79104 Freiburg,

Germany.
* Dedicated to Professor John W. Cahn on the occasion of his seventieth brithday.



where the parameter = is sufficiently small and W(u) is a double-well
potential of equal well-depth. A typical example is W(u)=u2(1&u)2. Inter-
estingly, the interface motion arising from the above equation involves not
only a curvature term but also a drift term, despite the fact that no drift
term is present in the original diffusion equation. More precisely we will
prove that the interface motion for the above equation is identical to that
for the equation

=ut=={2u+
=

h(x)
{h(x) } {u&

1
=

W$(u) (1.2)

We will also study systems of equations without a drift term:

{=ut=={2u+
1
=

h(v)2 f=(u), x # RN, t>0
(1.3)

=vt={2v+u&#v, x # RN, t>0

and compare their interface motion with those with a drift term, such as a
variant of the chemotaxis model proposed by Mimura and Tsujikawa(19)

(see also ref. 20), namely

{=ut=={2u&={ } (u{/(v))+
1
=

f=(u) in 0_(0, T ]
(P=)

=vt={2v+u&#v in 0_(0, T ]

where

f=(u)=u(1&u)(u&1�2+:=)

and where : and # are positive constants. The function / is called the
sensitivity function of the chemotactic aggregation. It satisfies /$(v)>0 for
v>0. A simple example is the case where /(v)=kv, with k being a positive
constant.

Let us briefly explain a biological background for Problem (P=). It is
well-known that most biological individuals migrate by random walk
and�or by directed movement. A typical example of directed movement is
the chemotaxis in which biological individuals move towards higher
gradients of some chemical substance. In the case of the aggregation of
slime mold, they secrete such chemotactic substance by themselves and
passively aggregate; thus chemotaxis works as an aggregating mechanism.

Recent experiments show that bacterial colonies, where individuals
migrate by diffusion and chemotaxis and grow by performing cell-division,
exhibit very complex spatial patterns.(6) In order to theoretically under-
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stand such chemotactic patterns, several mathematical models have been
proposed (for instance ref. 24). Problem (P=) is a chemotaxis-growth model
which describes the motion of individuals when the amount of nutrients is
constant. The unknown functions u(x, t) and v(x, t) are respectively the
population density of the individuals and the concentration of the
chemotactic substance at position x # 0 and time t>0.

A chemotaxis model without a growth term was originally proposed
by Keller and Segel(17) to describe the initiation of slime mold aggregation
where individuals do not grow. A typical property of the solutions is that
the density u localizes as a consequence of the chemotactic effect; in par-
ticular u may blow up in higher space dimension. We refer in particular to
refs. 8, 16, 21, 9, and 15.

Next we describe the behavior of the solution as = tends to zero. Let
(u= , v=) be the solution of Problem (P=). Then as = tends to 0, the functions
(u= , v=) are known to converge to (u0, v0) on the time interval [0, T ] for
some T>0, where u0 is the characteristic function of a moving domain
0t//0, whose law of motion is related to v0 via the following free bound-
ary problem (P0):

V=&(N&1) }+
�/(v0)

�n
+c0 : on 1t=�0t , t # (0, T ]

1t | t=0=10

&{2v0(x, t)+#v0(x, t)={0,
1,

x # 0"0t , t # [0, T ],
x # 0t , t # [0, T ]

(P0)

�v0

�&
=0 on �0, t # [0, T ]

where n is the outward unit normal vector on 1t , V is the normal velocity
on 1t , } is the mean curvature on 1t (positive if 0t is convex) and 0t

denotes the closure of the region 0t , namely 0t =0t _ 1t . The term c=
c0:=- 2 : is the velocity of the traveling front solution w(x, t)=w(z)
(z=x&ct) of the one-dimensional scalar reaction-diffusion equation

wt=wxx+w(1&w)(w&1�2+:), x # R, t>0

with the following boundary conditions at infinity:

w(&�, t)=1 and w(+�, t)=0

A formal derivation of the motion law for 1t is presented in ref. 5 and a
rigorous convergence proof has been given by Bonami, Hilhorst, Logak,
and Mimura(4) in the case where the equation for v is stationary.
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The evolution of 1t determines the aggregating patterns of the
individuals. In the presence of the chemotactic term, one can numerically
observe a number of cases where the solution 1t loses convexity and
develops very complicated patterns, which would not be the case when the
function /(v) is spatially constant so that the interface motion is driven
simply by mean curvature. Therefore one finds that the pattern dynamics
developed by Problem (P=) depends crucially on the chemotactic term. One
of the main purposes of this paper is to show that exactly the same com-
plex spatial patterns can be realized by a system of reaction-diffusion equa-
tions without a drift term.

The organization of this paper is as follows. In Section 2, we present
a formal derivation of the interface motion equations corresponding to the
Eqs. (1.1) and (1.2) and show that the two interface equations are identical.
The technique is based on matched asymptotic expansions using the so-
called signed distance function, which is found, for example, in Fife.(11)

In Section 3 we numerically compare the motions of interfaces for
(1.1) and (1.2) in two space dimensions and show that they are nearly iden-
tical, thereby confirming the theoretical prediction made in Section 2
through formal asymptotics. We also present other numerical results for
(1.2) showing some interesting behaviors of the interface such as loss of
convexity or convergence to a radially symmetric stationary curve, neither
of which would happen if the coefficient h(x) in (1.2) is constant.

Finally, in Section 4, we study systems (1.3) and (P=) and show, by a
formal asymptotic expansion, that their limiting equations as = � 0 give rise
to nearly the same free boundary problem as (P0). We also present numeri-
cal results for solutions of (1.3) showing formation of rich spatial patterns
which closely resemble those known for the chemotaxis-growth model (P=).

2. A FORMAL DERIVATION OF THE INTERFACE EQUATION

In this section we present a formal derivation of the equation of
motion of interfaces both for the advection-reaction-diffusion equation

=ut=={2u+
=

h(x)
{h(x) } {u+

1
=

f (u), x # RN, t>0 (2.1)

and for the reaction-diffusion equation with a spatially inhomogeneous
term:

=ut=={2u+
1
=

h(x)2 f (u), x # RN, t>0 (2.2)

Here = is a small positive parameter and h(x) is a smooth positive function.
We assume that f (u)=&W$(u) is a smooth function derived from a
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double-well potential W(u) whose local minima lie at u=0 and u=1.
More precisely we assume that f (0)= f (a)= f (1)=0, f $(0)<0, f $(a)>0,
f $(1)<0 and

|
1

0
f (u) du=0

The last condition is equivalent to W(0)=W(1), which means that the
potential W(u) has equal depth at its two wells.

Using the multi-time scaling method, one finds that the evolution of
solutions of (2.1) and that of (2.2) both consist of several stages. To explain
what these stages are, let us first consider the special case where h(x)=
const., in which case both Eqs. (2.1) and (2.2) reduce to the so-called
Allen�Cahn equation

=ut=={2u+
1
=

f (u)

In what follows u= will denote a solution of the above equation.
In the first stage (time scale {=t�=2), which takes place in a very fast

time scale, the effect of diffusion is negligible and u= evolves according to
the ordinary differential equation du=�d{= f (u=). Since the potential W
is of double-well type, u= approaches 0 if u=(x, 0)<a and approaches 1 if
u=(x, 0)>a. Accordingly, a sharp internal layer, where the gradient |{u=| is
very large, develops between the two regions [ur0] and [ur1], or, in
other words, near the area where [x # RN | u=(x, 0)=a]. In what follows we
call the set

1 == .
t�0

(1 =
t_[t]) (2.3)

the interface, where 1 =
t=[x # RN | u=(x, t)=a]. We will also call 1 =

t the
interface at time t.

In the second stage (time scale {~ =t�=), which takes place in a slower
but still relatively fast time scale, the diffusion term {2u= near the interface
becomes large enough to balance the reaction term. Here the situation dif-
fers depending on whether the potential W(u) has equal well-depth at u=0
and u=1 (that is, the case W(0)=W(1)) or not. As Allen and Cahn(2)

have observed, if W(0){W(1), then the interface starts to move at a con-
stant normal velocity. On the other hand, if W(0)=W(1) (which is the
case treated in the present paper), the interface remains stationary in this
time scale.

In the third stage (time scale t), which applies only to the case where
W(0)=W(1), the interface starts to move with normal velocity equal to its
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mean curvature.(2) Rubinstein, Sternberg and Keller(22) have given a
mathematically sound (but not completely rigorous) account of this
phenomena. Later more mathematically rigorous proofs have been given
by several authors: Xinfu Chen, (7) among others, has given a complete
account of the evolution of interfaces from the first to the third stage.

When h(x) is not a constant function, the above-mentioned scenario
remains the same up to the second stage except that the normal velocity of
the interface for the case W(0){W(1) now has the form Ch(x) with some
constant C. A more intriguing difference appears in the third stage. Namely
that the normal velocity of the interface (for the case W(0)=W(1)) now
depends not only on the curvature but also on the gradient of h(x), thus
the spatial inhomogeneity of the coefficient of the reaction term gives rise
to a drift effect. In what follows we shall derive this law of motion by using
the so-called matched asymptotic expansions (see refs. 1, 11, and 22 for a
basic idea of this technique).

2.1. Matched Asymptotic Expansions

Let u= be a solution of (2.1) or (2.2) and 1 = be the interface defined
by (2.3). Hereafter, we assume that the interface 1 = is smooth and that 1 =

t

is a smooth closed hypersurface in RN without boundaries for each t�0.
We denote by 0 =

t the bounded domain in RN enclosed by 1 =
t .

Let d =(x, t) be the signed distance function to 1 = defined by

d =(x, t)={dist(x, 1 =
t),

&dist(x, 1 =
t),

x # RN"0 =
t

x # 0=
t

(2.4)

Here dist(x, 1 =
t) is the distance from x to the hypersurface 1 =

t in RN.
We remark that d ==0 on 1 = and |{d =|=1. We assume that d = has the
expansion

d =(x, t)=d0(x, t)+=d1(x, t)+=2d2(x, t)+ } } }

and define

1t=[x # RN | d0(x, t)=0] (2.5)

0t=[x # RN | d0(x, t)<0] (2.6)

1= .
t�0

(1t_[t]) (2.7)

Q0= .
t�0

((RN"0t )_[t]) (2.8)

Q1= .
t�0

(0t_[t]) (2.9)
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Roughly speaking, 1t represents the position of the interface at time t in
the limit as = � 0, while 0t represents the region inside 1t .

We also assume that the solution u= has the expansions

u=(x, t)=u0(x, t)+=u1(x, t)+=2u2(x, t)+ } } } (2.10)

away from the interface 1 = (the outer expansion) and

u=(x, t)=U0(!, x, t)+=U1(!, x, t)+=2U2(!, x, t)+ } } } (2.11)

near 1 = (the inner expansion), where !=d =(x, t)�=. The stretched space
variable ! gives exactly the right spatial scaling to describe the sharp
transition between the regions [ur0] and [ur1]. Since u==a on 1 =, we
normalize Uk in such a way that U0(0, x, t)=a, Uk(0, x, t)=0 (k=1, 2,...)
for all (x, t) near 1 = (normalization conditions). To make the inner and
outer expansions consistent, we require that

Uk(+�, x, t)=u+
k (x, t) if x # (RN"0t ) _ 1t (2.12)

Uk(&�, x, t)=u&
k (x, t) if x # 0t _ 1t (2.13)

for all (x, t) near 1 and all k�0 (matching conditions), where u+
k and u&

k

respectively denote the terms of outer expansion (2.10) in the region Q0

and the region Q1 . In particular, if x # 1t , then one has to take into
account both of the conditions (2.12), (2.13).

2.2. Motion of the Interface for Eq. (2.1)

Substituting the outer expansion (2.10) into (2.1) and collecting the
=&1 and =0 terms respectively, we get

f (u0(x, t))=0

f $(u0(x, t)) u1(x, t)=0

in Q0 _ Q1 . The first equation implies u0=0, u0=a or u0=1. Since we are
studying interfaces between the regions [ur0] and [ur1], we have either
u0(x, t)=0 in Q0 and u0(x, t)=1 in Q1 or the other way around. As both
cases are treated similarly, we will assume the former throughout this
section. From the second condition we get u1(x, t)=0 in Q0 _ Q1 .

Next, substituting the inner expansion (2.11) into (2.1) and collecting
the =&1 and =0 terms, we obtain

U0!!+ f (U0)=0 (2.14)

U1!!+ f $(U0) U1=U0! \d0t&{2d0&
{h } {d0

h +&2{(U0!) } {d0 (2.15)
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Both (2.14) and (2.15) are ordinary differential equations, with x, t acting
the role of parameters. From (2.14) together with the matching conditions
and the normalization conditions, we find that

U0(!, x, t)=,(!) (2.16)

for all ! # R and all (x, t) near 1 where , is the unique solution of the
stationary problem

{,!!+ f (,)=0, ! # R
,(&�)=1, ,(0)=a, ,(+�)=0

(2.17)

Note that this is a standing wave solution of the one-dimensional diffusion
equation

ut=uxx+ f (u)

See ref. 12 for the details of (2.17).
Substituting (2.16) into (2.15) and recalling the normalization condi-

tions, we get

{U1!!+ f $(,(!)) U1=\d0t&{2d0&
{h } {d0

h + ,$(!), ! # R
(2.18)

U1(0, x, t)=0

The following Fredholm type lemma gives us the solvability condition for
(2.18), which is a direct consequence of a result proven by Alikakos, Bates
and Chen [1, Lemma 4.1].

Lemma 2.1. Let A(!, x, t) be given and assume that A(!, x, t)=
O(e&$ |!|) as |!| � � for some $>0. Then for each (x, t), the following
equation

{�!!+ f $(,(!)) �=A(!, x, t), ! # R
�(0, x, t)=0, �( } , x, t) # L�(R)

(2.19)

has a solution if and only if

|
R

A(!, x, t) ,$(!) d!=0

In addition, the solution, if it exists, is unique and satisfies �(!, x, t)=
O(e&$ |!|) as |!| � �.
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By this lemma, the solvability condition for (2.18) yields

d0t={2d0+
{h } {d0

h

and thus U1(!, x, t)=0 for all ! # R. (Incidentally, this U1 satisfies the
matching conditions (2.12) and (2.13)).

Let us derive the equation of interface motion from (2.20). Since {d0

(={xd0(x, t)) coincides with the outward normal unit vector to the hyper-
surface 1t , one easily sees that &d0t(x, t)=V, where V is the normal
velocity of the interface 1t . It is also known that the mean curvature } of
the interface is equal to &{2d0 �(N&1). Thus Eq. (2.20) is equivalent to

V=&(N&1) }&
�

�n
(log h) on 1t (2.20)

2.3. Motion of the Interface for Eq. (2.2)

Substituting the outer expansion (2.10) into (2.2) and collecting the
=&1 and =0 terms respectively, we get

h(x)2 f (u0(x, t))=0

h(x)2 f $(u0(x, t)) u1(x, t)=0

in Q0 _ Q1 . Hence we have u0(x, t)=0 in Q0 , u0(x, t)=1 in Q1 and
u1(x, t)=0 in Q0 _ Q1 .

Substituting the inner expansion (2.11) into (2.2) and collecting the
=&1 and =0 terms, we get

U0!!+h(x)2 f (U0)=0 (2.21)

U1!!+h(x)2 f $(U0) U1=U0!(d0t&{2d0)&2{(U0!) } {d0 (2.22)

From (2.21) together with the matching conditions and the normalization
conditions,

U0(!, x, t)=,(h(x) !) (2.23)

for all ! # R and all (x, t) near 1 where , is the solution of (2.17). Then
Eq. (2.22) becomes

U1!!+h(x)2 f $(,(h(x) !)) U1

=(d0t&{2d0) h(x) ,$(h(x) !)

&2{h } {d0[,$(h(x) !)+h(x) !,"(h(x) !)], ! # R
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Letting z=h(x) ! and taking into consideration the normalization condi-
tions, we have

{U1zz+ f $(,(z)) U1=\d0t&{2d0&
2{h } {d0

h + ,$(z)
h

&
2{h } {d0

h2 z,"(z)

U1(0, x, t)=0 (2.24)

The solvability condition for (2.24) is written as

\d0t&{2d0&
2{h } {d0

h + |
R

[,$(z)]2 dz&
2{h } {d0

h |
R

z,$(z) ,"(z) dz=0

Using �R z,$," dz=&1
2 �R (,$)2 dz, we get

d0t={2d0+
{h } {d0

h

thus again the interface equation (2.20). Incidentally, we have

U1(!, x, t)=
{h } {d0

h2 9(h(x) !)

where 9(z) is the unique solution of

{9zz+ f $(,(z)) 9=&(,$(z)+2z,"(z)), z # R
9(0)=0, 9 # L�(R)

In conclusion, we have formally proven that as = � 0, solutions u= of
Eq. (2.1) and those of (2.2) both satisfy

u= � {0,
1,

x # RN "0t

x # 0t

where the boundary 1t of 0t moves according to the law (2.20).
It is perhaps useful to note that the interface equation (2.20) can be

derived from the interface energy

|
1

0
- 2(W(u)&W(0)) du |

1t

h(x) dSx

which is obtained by letting = � 0 in the free energy

|
RN {=

2
|{u|2+

h(x)2

=
(W(u)&W(0))= dx (2.25)
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See refs. 18 and 23 for derivation of (2.25) as a singular limit of the above
energy.

3. NUMERICAL SIMULATIONS IN A SQUARE REGION IN R2

In this section we numerically investigate the dynamics of solutions of
(2.1) and (2.2) for N=2. Recall that both of these equations have the same
interface equation (2.20) in the singular limit as = � 0.

If h is a constant function, then the interface equation becomes what
is called the curve shortening equation

V=&} (3.1)

The motion of curves according to (3.1) is well understood. The results of
Gage and Hamilton(13) and Grayson (14) imply that the solution of (3.1)
starting from any non-self-intersecting closed curve 10 becomes convex and
shrinks to a single point in finite time.

For computational simplicity, the domain will be restricted to a square
region 0=[(x, y) # R2 | 0<x<l, 0< y<l] with the zero-flux boundary
conditions on the boundary �0. In the following figures, the white region
approximately represents the set 0=

t and the black region approximately
represents 0"0=

t .

3.1. Stable Stationary Solutions

3.1.1. Radial Case. Suppose that the function h is radially sym-
metric, so that one can write h=h(r). In this situation, if the initial curve
10 is a circle with center at the origin, then 1t remains a circle for each
t>0. Let R(t) be the radius of 1t . Then Eq. (2.20) is equivalent to

dR
dt

=&
1
R

&
h$(R)
h(R)

=&
d

dR
log(Rh(R)) (3.2)

Therefore if Rh(R) attains a local minimum, say at R=R*, then the cir-
cular interface with radius R* is a stationary solution and is stable with
respect to any radially symmetric perturbation. It then follows from the
comparison theorem that this stationary interface is also stable with respect
to any perturbation.

To prove this last statement, let 10 be a closed curve obtained by
giving a small��but not necessarily radially symmetric��perturbation to the
circle r=R*. Then 10 is enclosed between the circles r=R*&$ and r=
R*+$, where $ is very small. Let 1&(t), 1 (t), 1+(t) be the solutions of the
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File: 822J 236012 . By:XX . Date:22:07:99 . Time:14:33 LOP8M. V8.B. Page 01:01
Codes: 728 Signs: 195 . Length: 44 pic 2 pts, 186 mm

Fig. 1. Time evolution of u=(x, t) of (2.1) when ==0.025, f (u)=u(1&u)(u&1�2) and
h(x)=1�( |x| 2+1�9)+1.

Fig. 2. Time evolution of u=(x, t) of (2.2) where =, f, h are the same as in Fig. 1.
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File: 822J 236013 . By:XX . Date:09:06:99 . Time:13:03 LOP8M. V8.B. Page 01:01
Codes: 2063 Signs: 1569 . Length: 44 pic 2 pts, 186 mm

interface equation (2.20) for the initial data r=R*&$, 10 and r=R*+$,
respectively. By the stability of the circle r=R* with respect to radially
symmetric perturbations, the two circles 1&(t), 1+(t) remain close to the
circle r=R* as time passes. And, by the comparison theorem, the curve
1 (t) remains enclosed between the circles 1&(t), 1+(t). Consequently, the
curve 1 (t) remains close to the circle r=R*, which proves the stability of
this circle with respect to arbitrary small perturbations.

Figures 1 and 2 show convergence of an arbitrarily chosen interface to
such a stable circular interface in the case where h(x)=1�( |x| 2+1�9)+1.
In this case, R*=- 5�3. Figure 1 shows the interface motion for Eq. (2.1)
and Fig. 2 that for Eq. (2.2) with ==0.025.

As anticipated from the fact that Eqs. (2.1) and (2.2) share the same limit
interface equation (2.20), we observe very similar interface motion in Figs. 1
and 2. Note, however, that there is difference between the thickness of the
internal layer around the interface for Eq. (2.1) and that for Eq. (2.2)��a fact
reflected by the difference of the U0 terms (2.16) and (2.23).

3.1.2. Nonradial case. Figures 3 and 4 respectively show the
behaviors of interfaces for Eqs. (2.1), (2.2) when h(x)=exp(1.25 cos(3(4x2

1

+x2
2))) and the initial interface is circular. Again the motions of the two

interfaces are nearly identical, and they approach a stable ellipse-like curve.

Fig. 3. Time evolution of u=(x, t) of (2.1) when ==0.025, f (u)=u(1&u)(u&1�2) and h(x)=
exp( p cos(q(4x2

1+x2
2))) with p=1.25, q=3.
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File: 822J 236014 . By:XX . Date:22:07:99 . Time:14:33 LOP8M. V8.B. Page 01:01
Codes: 1784 Signs: 850 . Length: 44 pic 2 pts, 186 mm

Fig. 4. Time evolution of u=(x, t) of (2.2) where =, f, h are the same as in Fig. 3.

3.2. Loss of Convexity

An initially convex interface may lose its convexity in finite time even
if h(x) has convex level curves, as already observed in Figs. 3 and 4. Loss
of convexity occurs even when h(x) is radially symmetric. Figures 5 and 6
��respectively for Eqs. (2.1) and (2.2)��show such an example.

4. MOTION OF THE INTERFACE FOR A
REACTION-DIFFUSION SYSTEM

In this section we introduce a reaction-diffusion system without a drift
term:

{=ut=={2u+
1
=

h(v)2 f=(u), x # RN, t>0
(4.1)

=vt={2v+u&#v, x # RN, t>0

where f=(u)=u(1&u)(u&1�2+:=). Our purpose is to show, by formal
asymptotics, that the motion of interface for this equation is nearly iden-
tical to that for the so-called chemotaxis-growth system

{=ut=={2u&={ } (u{/(v))+
1
=

f=(u), x # RN, t>0
(4.2)

=vt={2v+u&#v, x # RN, t>0
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File: 822J 236015 . By:XX . Date:09:06:99 . Time:13:04 LOP8M. V8.B. Page 01:01
Codes: 767 Signs: 230 . Length: 44 pic 2 pts, 186 mm

Fig. 5. Time evolution of u=(x, t) of (2.1) when ==0.025, f (u)=u(1&u)(u&1�2) and h(x)=
exp( p sin(q? |x| 2) with p=1.956, q=1.15.

Fig. 6. Time evolution of u=(x, t) of (2.2) where =, f, h are the same as in Fig. 5.
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which has been proposed by ref. 19 as a model of aggregating biological
individuals in the case where h(v)=e&/(v). We will then present numerical
results that show some interesting aggregating patterns for (4.1).

Let (u=, v=) be the solution of (4.1) or (4.2). As before, we define the
interface 1 = by

1 == .
t�0

(1 =
t_[t])

where 1 =
t=[(x, t) | u=(x, t)=1�2]. We also define d0(x, t), 1t , 0t , 1, Q0

and Q1 as in Section 2.
By letting = � 0 in (4.2), Bonami, Hilhorst, Logak and Mimura(5) have

formally derived the following free boundary problem which describes the
law of interface motion for the chemotaxis-growth model:

V=&(N&1) }+
�/(v0)

�n
+- 2 : on 1t

(4.3)

&{2v0+#v0={0,
1,

x # RN"0t ,
x # 0t

Their derivation is based upon using the traveling wave of an auxiliary
problem and the signed distance function as it is done, for example, by
Barles, Soner and Souganidis.(3) We remark that this method is for the
most part equivalent to the method of matched asymptotic expansions
which we have explained in Section 2. Bonami et al. have also given a
rigorous convergence proof in the case where the equation for v is station-
ary.(4)

We now formally derive a free boundary problem for our model (4.1)
by using matched asymptotic expansions. We assume that u= has the outer
expansion (2.10) and the inner expansion (2.11) and we impose the same
normalization conditions and matching conditions as in Section 2.1. We
also assume that v= has the expansion

v=(x, t)=v0(x, t)+=v1(x, t)+=2v2(x, t)+ } } } (4.4)

for all (x, t).
Substituting (2.10) and (4.4) into (4.1) and collecting the =&1 and =0

terms, we get
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h(v0)2 f0(u0)=0 (4.5)

2h(v0) h$(v0) v1 f0(u0)+h(v0)2 f $0(u0) u1+h(v0)2 f1(u0)=0 (4.6)

{2v0+u0&#v0=0 (4.7)

in Q0 _ Q1 , where f0(u)=u(1&u)(u&1�2) and f1(u)=:u(1&u). By (4.5)
and (4.6), we have u0(x, t)=0 in Q0 , u0(x, t)=1 in Q1 and u1(x, t)=0 in
Q0 _ Q1 independently of the values of v0(x, t) and v1(x, t). Hence by (4.7),
v0 is the solution of

&{2v0+#v0={0,
1,

x # RN"0t

x # 0t
(4.8)

Substituting (2.11) and (4.4) into the first equation of (4.1) and
collecting the =&1 and =0 terms, we get

U0!!+h(v0)2 f0(U0)=0 (4.9)

U1!!+h(v0)2 f $0(U0) U1=U0!(d0t&{2d0)&2{(U0!) } {d0

&2h(v0) h$(v0) v1 f0(U0)&h(v0)2 f1(U0) (4.10)

It follows from (4.9), the matching conditions and the normalization condi-
tions that

U0(!, x, t)=,(h(v0(x, t)) !)

for all ! # R and all (x, t) near 1, where , is the solution of (2.17) with
f =f0 , namely

,(!)=
1
2 \1&tanh \ !

2 - 2++
Letting z=h(v0(x, t)) !, we obtain from (4.10)

U1zz+ f $0(,(z)) U1=
1

h(v0)
(d0t&{2d0) ,$(z)

&2
h$(v0)
h(v0)2 {v0 } {d0(,$(z)+z,"(z))

&2
h$(v0)
h(v0)

v1 f0(,(z))& f1(,(z)) (4.11)
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The solvability condition for (4.11) with the normalization conditions
implies

\d0t&{2d0&2
h$(v0)
h(v0)

{v0 } {d0+ |
R

[,$(z)]2 dz

&2
h$(v0)
h(v0)

{v0 } {d0 |
R

z,$(z) ,"(z) dz&2h$(v0) v1 |
R

f0(,(z)) ,$(z) dz

&h(v0) |
R

f1(,(z)) ,$(z) dz=0 (4.12)

Note that the function , also satisfies

,"+c,$+ f=(,)=0, z # R (4.13)

with c=- 2 :=. Multiplying (4.13) by ,$ and integrating over R, we get

|
R

f1(,(z)) ,$(z) dz=&- 2 : |
R

[,$(z)]2 dz

Therefore we obtain from (4.12)

d0t={2d0+
h$(v0)
h(v0)

{v0 } {d0&- 2 :h(v0)

Letting /(v)=&log h(v), we have formally proven that the interface
1t moves according to the following free boundary problem, which is very
similar to (4.3):

V=&(N&1) }+
�/(v0)

�n
+- 2 :e&/(v0) on 1t

(4.14)

&{2v0+#v0={0,
1,

x # RN"0t

x # 0t

Remark 4.1. When the constant : depends on v and is given by
:=:~ e/(v), the free boundary problem (4.14) completely coincides with (4.3).

In ref. 19, Mimura and Tsujikawa have studied the existence and
stability of radially symmetric stationary solutions to a variant of (4.2),
namely

{ut==2{2u&={ } (u{/(v))+ f (u),
vt={2v+u&#v,

x # 0, t>0
x # 0, t>0

(4.15)
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Fig. 7. Time evolution of u=(x, t) of (4.1) when ==0.05, :=1.0, #=1.0, h(v)=a exp(&bv)
with a=20�- 2, b=6.41.

Fig. 8. Time evolution of u=(x, t) of (4.1) when ==0.05, :=1.0, #=5.0, h(v)=a exp(&bv)
with a=20�- 2, b=17.55.
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and have numerically observed highly complex aggregating patterns (see
also ref. 20). As shown in Figs. 7 and 8 below, we also observe very similar
complex spatial patterns for our model.

In Fig. 7, parameters are chosen so that planar interfaces are stable
and the circular stationary interface has 2-mode instability. One observes
that an originally circular interface eventually becomes a rod-shaped pat-
tern which stretches at a constant speed.

In Fig. 8, parameters are chosen so that planar interfaces are stable
and the circular stationary interface has 3-mode instability. One observes
triangularly branching patterns.

Both of the patterns observed in Figs. 7, 8 closely resemble those
found in ref. 19.
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